Notation and Equations for Exam 3

r Sample correlation

m The number of predictor variables in a regression

 X_i A predictor variable in a regression. The subscript *i* represents any number from 1 through *m*.

Y The outcome variable that is being predicted or explained in a regression

 \hat{Y} (Y-hat) The estimated outcome value as predicted by the regression equation

 b_i The regression coefficient for predictor X_i (sometimes written as $b_{predictor\ name}$)

 b_0 The intercept in the regression equation

 σ_{b_i} The standard error of a regression coefficient

 SS_Y The total sum of squares for the outcome in a regression

SS_{regression} The sum of squares explained by the predictors in a regression

 R^2 The proportion of variability explained by a regression

SS_{total} The total variability in the data for an ANOVA

SS_{treatment} Variability explainable by differences among groups (simple ANOVA) or measurements (repeated measures)

*SS*_{factor} Variability explainable by the main effect of some factor

SS_{A:B} Variability explainable by interaction between factors A and B

SS_{residual} The residual sum of squares, representing the variability that can't be explained in regression or ANOVA

Mean square for any effect we might want to test; the subscript can be regression, treatment, Factor, A:B, etc.

 df_{effect} Degrees of freedom for SS_{effect} and MS_{effect} , where effect is any effect we might want to test

*MS*_{residual} The residual mean square; used as an estimate of the population variance, σ^2 or σ_Y^2

 df_{residual} The degrees of freedom for SS_{residual} and MS_{residual}

F F statistic

The number of levels of a factor (treatment) in an ANOVA; written as k_{Factor} when there are multiple factors

 M_i The sample mean of Group *i* in a simple ANOVA or Measurement *i* in a repeated-measures ANOVA (i = 1 to k)

 M_s The mean of all measurements from Subject s in a repeated-measures ANOVA (s = 1 to n)

 n_i The number of data (e.g., subjects) in Group i

 \overline{M} The grand mean, i.e. the mean of all the data in all groups taken together

Formula for correlation	$r = \frac{\sum (z_X \cdot z_Y)}{n-1}$
Interpreting correlation	$r = -1$ \rightarrow perfect negative relationship $r < 0$ \rightarrow negative relationship $r = 0$ \rightarrow no linear relationship
	r > 0 → positive relationship $r = 1$ → perfect positive relationship
Relationship between correlation and prediction	$z_{\hat{Y}} = r \cdot z_X$
Regression equation	$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_m X_m = b_0 + \sum_{i=1 \text{ to } m} b_i X_i$
Total variability in a regression	$SS_Y = \sum (Y - M_Y)^2$
Residual variability in a regression	$SS_{\text{residual}} = \sum (Y - \hat{Y})^2$
Variability explained by a regression	$SS_{\text{regression}} = SS_Y - SS_{\text{residual}}$
Proportion of variability explained by regression	$R^2 = \frac{SS_{\text{regression}}}{SS_Y}$
Explained variability with one predictor	$R^2 = r^2$
t statistic for a regression coefficient	$t = \frac{b_i}{\sigma_{b_i}}$
Total sum of squares in an ANOVA	$SS_{\text{total}} = \sum (X - \overline{M})^2$
Residual sum of squares in a simple ANOVA	$SS_{\text{residual}} = \sum (X_1 - M_1)^2 + \sum (X_2 - M_2)^2 + \dots + \sum (X_k - M_k)^2 = \sum_i (\sum (X_i - M_i)^2)$
Treatment sum of squares for simple ANOVA	$SS_{\text{treatment}} = \sum_{i} n_{i} \cdot \left(M_{i} - \overline{M} \right)^{2}$

Mean squares from sum of squares	$MS_{ m regression} = rac{SS_{ m regression}}{df_{ m regression}}$ $MS_{ m treatment} = rac{SS_{ m treatment}}{df_{ m treatment}}$ $MS_{factor} = rac{SS_{factor}}{df_{factor}}$
	$MS_{A:B} = \frac{SS_{A:B}}{df_{A:B}}$ $MS_{residual} = \frac{SS_{residual}}{df_{residual}}$
F statistic for explained variability	$F = \frac{MS_{\text{regression}}}{MS_{\text{residual}}} \qquad F = \frac{MS_{\text{treatment}}}{MS_{\text{residual}}} \qquad F_{\text{factor}} = \frac{MS_{\text{factor}}}{MS_{\text{residual}}} \qquad F_{\text{A:B}} = \frac{MS_{\text{A:B}}}{MS_{\text{residual}}}$
p-value for explained variability	$p = p \Big(F_{df_{\text{regression}}, df_{\text{residual}}} \ge F \Big) \qquad p = p \Big(F_{df_{\text{treatment}}, df_{\text{residual}}} \ge F \Big) \qquad p_{factor} = p \Big(F_{df_{factor}, df_{\text{residual}}} \ge F_{factor} \Big)$ $p_{\text{A:B}} = p \Big(F_{df_{\text{A:B}}, df_{\text{residual}}} \ge F_{\text{A:B}} \Big)$
Partitioning variability for regression	$SS_Y = SS_{\text{regression}} + SS_{\text{residual}}$
Partitioning variability for simple ANOVA	$SS_{\text{total}} = SS_{\text{treatment}} + SS_{\text{residual}}$
Partitioning variability for repeated measures	$SS_{\text{total}} = SS_{\text{treatment}} + SS_{\text{subject}} + SS_{\text{residual}}$
Partitioning variability for factorial ANOVA	$SS_{\text{total}} = SS_A + SS_B + SS_C + \dots$ [every main effect] + $SS_{A:B} + SS_{A:C} + SS_{B:C} + \dots$ [every 2-way interaction] + $SS_{A:B:C} + \dots$ [every higher-order interaction, up to the total number of factors] + SS_{residual}
Recognizing an interaction	$M_{a_1,b_1} - M_{a_2,b_1} \neq M_{a_1,b_2} - M_{a_2,b_2} $ Interaction